8 research outputs found

    Genome-Wide Association Study of Peripheral Artery Disease

    Get PDF
    Background: Peripheral artery disease (PAD) affects >200 million people worldwide and is associated with high mortality and morbidity. We sought to identify genomic variants associated with PAD overall and in the contexts of diabetes and smoking status. Methods: We identified genetic variants associated with PAD and then meta-analyzed with published summary statistics from the Million Veterans Program and UK Biobank to replicate their findings. Next, we ran stratified genome-wide association analysis in ever smokers, never smokers, individuals with diabetes, and individuals with no history of diabetes and corresponding interaction analyses, to identify variants that modify the risk of PAD by diabetic or smoking status. Results: We identified 5 genome-wide significant (P-associationPeer reviewe

    Genome-wide association study of lifetime cannabis use based on a large meta-analytic sample of 32330 subjects from the International Cannabis Consortium

    Get PDF
    Cannabis is the most widely produced and consumed illicit psychoactive substance worldwide. Occasional cannabis use can progress to frequent use, abuse and dependence with all known adverse physical, psychological and social consequences. Individual differences in cannabis initiation are heritable (40-48%). The International Cannabis Consortium was established with the aim to identify genetic risk variants of cannabis use. We conducted a meta-analysis of genome-wide association data of 13 cohorts (N=32 330) and four replication samples (N=5627). In addition, we performed a gene-based test of association, estimated single-nucleotide polymorphism (SNP)-based heritability and explored the genetic correlation between lifetime cannabis use and cigarette use using LD score regression. No individual SNPs reached genome-wide significance. Nonetheless, gene-based tests identified four genes significantly associated with lifetime cannabis use: NCAM1, CADM2, SCOC and KCNT2. Previous studies reported associations of NCAM1 with cigarette smoking and other substance use, and those of CADM2 with body mass index, processing speed and autism disorders, which are phenotypes previously reported to be associated with cannabis use. Furthermore, we showed that, combined across the genome, all common SNPs explained 13-20% (P<0.001) of the liability of lifetime cannabis use. Finally, there was a strong genetic correlation (rg=0.83; P=1.85 × 10(-8)) between lifetime cannabis use and lifetime cigarette smoking implying that the SNP effect sizes of the two traits are highly correlated. This is the largest meta-analysis of cannabis GWA studies to date, revealing important new insights into the genetic pathways of lifetime cannabis use. Future functional studies should explore the impact of the identified genes on the biological mechanisms of cannabis use

    Genome-Wide Meta-Analysis of Cotinine Levels in Cigarette Smokers Identifies Locus at 4q13.2

    Get PDF
    Genome-wide association studies (GWAS) of complex behavioural phenotypes such as cigarette smoking typically employ self-report phenotypes. However, precise biomarker phenotypes may afford greater statistical power and identify novel variants. Here we report the results of a GWAS meta-analysis of levels of cotinine, the primary metabolite of nicotine, in 4,548 daily smokers of European ancestry. We identified a locus close to UGT2B10 at 4q13.2 (minimum p = 5.89 x 10(-10) for rs114612145), which was consequently replicated. This variant is in high linkage disequilibrium with a known functional variant in the UGT2B10 gene which is associated with reduced nicotine and cotinine glucuronidation activity, but intriguingly is not associated with nicotine intake. Additionally, we observed association between multiple variants within the 15q25.1 region and cotinine levels, all located within the CHRNA5-A3-B4 gene cluster or adjacent genes, consistent with previous much larger GWAS using self-report measures of smoking quantity. These results clearly illustrate the increase in power afforded by using precise biomarker measures in GWAS. Perhaps more importantly however, they also highlight that biomarkers do not always mark the phenotype of interest. The use of metabolite data as a proxy for environmental exposures should be carefully considered in the context of individual differences in metabolic pathways.Peer reviewe

    Association of Maternal Smoking With Child Cotinine Levels

    Get PDF
    INTRODUCTION: Our aim was to understand the strength of association between parental smoking and child environmental tobacco smoke (ETS) exposure in order to inform the development of future tobacco control policies. ETS was measured using child cotinine levels below the active smoking threshold. METHODS: Participants were drawn from the Avon Longitudinal Study of Parents and Children and included 3,128 participants at age 7 years and 1,868 participants at age 15 years. The primary outcome was cotinine levels of nonsmoking children, to investigate the relationship between maternal smoking and child cotinine levels. The secondary outcome was cotinine levels of all individuals to investigate the relationship between child smoking and child cotinine levels. Maternal and child smoking behavior was assessed by self-report questionnaire. We adjusted for several sociodemographic variables. RESULTS: We found an association between maternal smoking and child cotinine at age 7 years (mean cotinine = 1.16ng/ml serum, ratio of geometric means = 3.94, 95% CI = 2.86–5.42) and at age 15 years (mean cotinine = 0.94ng/ml serum, ratio of geometric means = 5.26, 95% CI = 3.06–9.03), after adjustment for potential confounders. CONCLUSIONS: The magnitude of this association for children whose mothers were heavy smokers was comparable with the quantity of half the levels of cotinine observed among children who were irregular (i.e., nonweekly) active smokers, and it was greater than five times higher than that seen in nonsmoking children whose mothers didn’t smoke. This provides further evidence for the importance of public health interventions to reduce smoking exposure in the home

    Assessment of the causal relevance of ECG parameters for risk of atrial fibrillation: A mendelian randomisation study.

    No full text
    BackgroundAtrial electrical and structural remodelling in older individuals with cardiovascular risk factors has been associated with changes in surface electrocardiographic (ECG) parameters (e.g., prolongation of the PR interval) and higher risks of atrial fibrillation (AF). However, it has been difficult to establish whether altered ECG parameters are the cause or a consequence of the myocardial substrate leading to AF. This study aimed to examine the potential causal relevance of ECG parameters on risk of AF using mendelian randomisation (MR).Methods and findingsWeighted genetic scores explaining lifelong differences in P-wave duration, PR interval, and QT interval were constructed, and associations between these ECG scores and risk of AF were estimated among 278,792 UK Biobank participants (mean age: 57 years at recruitment; 19,132 AF cases). The independent genetic variants contributing to each of the separate ECG scores, and their corresponding weights, were based on published genome-wide association studies. In UK Biobank, genetic scores representing a 5 ms longer P-wave duration or PR interval were significantly associated with lower risks of AF (odds ratio [OR] 0.91; 95% confidence interval [CI]: 0.87-0.96, P = 2 × 10-4 and OR 0.94; 95% CI: 0.93-0.96, P = 2 × 10-19, respectively), while longer QT interval was not significantly associated with AF. These effects were independently replicated among a further 17,931 AF cases from the AFGen Consortium. Investigation of potential mechanistic pathways showed that differences in ECG parameters associated with specific ion channel genes had effects on risk of AF consistent with the overall scores, while the overall scores were not associated with changes in left atrial size. Limitations of the study included the inherent assumptions of MR, restriction to individuals of European ancestry, and possible restriction of results to the normal ECG ranges represented in UK Biobank.ConclusionsIn UK Biobank, we observed evidence suggesting a causal relationship between lifelong differences in ECG parameters (particularly PR interval) that reflect longer atrial conduction times and a lower risk of AF. These findings, which appear to be independent of atrial size and concomitant cardiovascular comorbidity, support the relevance of varying mechanisms underpinning AF and indicate that more individualised treatment strategies warrant consideration

    Risk Factors for Dropping out of High School: A Review of Contemporary, International Empirical Research

    No full text
    corecore